

A routing algorithm for FPGAs with time-multiplexed
interconnects

Ruiqi Luo1, 2, 3, Xiaolei Chen4, and Yajun Ha1, †

1School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
2Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
3University of Chinese Academy of Sciences, Beijing 100049, China
4Intel Singapore, Singapore 339510, Singapore

Abstract: Previous studies show that interconnects occupy a large portion of the timing budget and area in FPGAs. In this
work, we propose a time-multiplexing technique on FPGA interconnects. In order to fully exploit this interconnect architecture,
we propose a time-multiplexed routing algorithm that can actively identify qualified nets and schedule them to multiplexable
wires. We validate the algorithm by using the router to implement 20 benchmark circuits to time-multiplexed FPGAs. We
achieve a 38% smaller minimum channel width and 3.8% smaller circuit critical path delay compared with the state-of-the-art ar-
chitecture router when a wire can be time-multiplexed six times in a cycle.

Key words: field programmable gate arrays; digital integrated circuits; routing algorithm design and analysis; digital integrated
circuits

Citation: R Q Luo, X L Chen, and Y J Ha, A routing algorithm for FPGAs with time-multiplexed interconnects[J]. J. Semicond., 2020,
41(2), 022405. http://doi.org/10.1088/1674-4926/41/2/022405

1. Introduction

Interconnect and logic resources can be seen as the two
significant parts of FPGAs. Logic blocks are used to imple-
ment a user design. Interconnect resources are designed to
achieve connections among logic blocks. In FPGAs, logic re-
sources are always organized as arrays of blocks. Intercon-
nect resources are routing switches and wires grouped into
channels. FPGA interconnects (or interconnection network)
can be thought of as a programmable network of signal
paths among FPGA logic resource ports.

Both measurements and analyses indicate that the pro-
grammable interconnections contribute the most to the FP-
GA area, latency, and power consumption. In order to
achieve high routability with reduced routing, FPGA vendors
use the substantial on-chip area to route programmable
switches and wires[1]. This is why interconnects out-weight lo-
gic in terms of power budget and area. FPGA interconnects
are slow because they need to traverse a series of tracks con-
nected by switches to route among different logic blocks. Op-
timizing the interconnect network is critical because it has a
profound impact on the performance of FPGAs.

Previous work by Trimberger et al.[2] has illustrated that
the utilization of logic resources in FPGA can be improved by
time-multiplexing, which inspires us to apply time-multiplex-
ing to FPGA interconnection networks and leads to our new
architecture and routing algorithm that we will introduce in
this paper. We notice that most wires are only used for a
short period in a clock cycle. The delay of wire for a signal is

only a small portion in a clock cycle. So we can better utilize
the interconnect resources by time-multiplexing signals. It
can also improve the FPGA performance at a small cost of
the multiplexing circuitry complexity.

FPGAs with time-multiplexed interconnects require speci-
alized electric design automation (EDA) algorithms and tools
to support them. Existing algorithms and tools cannot be re-
used in their present forms because they are not multiplex-
ing-aware. In this paper, we propose a time-multiplexing-
aware routing algorithm. This algorithm is similar to VPR rout-
ing algorithm[3]. Unlike the VPR algorithm, our algorithm can
add the time-multiplex feature to the algorithm and imple-
ment it. In order to achieve this feature, we also design TM
switches which are described in an architecture file. We
define a bitmap for signals in our design, which is a new tech-
nique and can add the scheduling capability to the VPR al-
gorithm. This algorithm can be seen as timing-driven be-
cause it has a delay-sensitive term in its multiplexing-aware
congestion cost function.

We also validate our proposed routing algorithm experi-
mentally. We evaluate our TM-ARCH FPGAs by using our TM-
router to replace the conventional VPR router in a standard FP-
GA EDA flow. We also use the VPR 5 router[4] as a comparis-
on on the same set of benchmark circuits with conventional
architecture. Experimental results reveal that we only use
65% average minimum channel width of conventional architec-
tures on average and can achieve 3.8% smaller circuit critical
path delay on average.

The rest of this paper is as follows. Section 2 introduces ex-
isting FPGA architectures and their EDA algorithms. Section 3
briefly introduces TM-ARCH architecture. Section 4 proposes
our time-multiplexing-aware routing algorithm. Section 5 int-
roduces what we have done to validate this algorithm, and

Correspondence to: Y J Ha, hayj@shanghaitech.edu.cn
Received 6 DECEMBER 2019; Revised 31 DECEMBER 2019.

©2020 Chinese Institute of Electronics

ARTICLES

Journal of Semiconductors
(2020) 41, 022405

doi: 10.1088/1674-4926/41/2/022405

http://dx.doi.org/10.1088/1674-4926/41/2/022405

also presents experimental results. Finally, Section 6 con-
cludes this paper.

2. Related work

Previous work on time-multiplexed FPGA[2] has been
done. Trimberger et al. propose both time-multiplexed inter-
connects and configurable logic blocks (CLBs) with the Xilinx
XC4000E FPGA family. To facilitate mapping user designs in-
to time-multiplexed architecture, a scheduling algorithm is
presented[5] that is based on list scheduling. Lin et al. also ap-
ply time-multiplexing to Xilinx 4000 architecture FPGA[6], but
they only time-multiplex routing resources. Even so, they still
have achieved 30% reduction of channel density. Francis
et al.[7] apply time-multiplexed interconnects to an Altera FP-
GA, which is similar to our architecture proposed in this pa-
per. Only interconnects are time-multiplexed in ours, Lin's and
Francis’ work, while both logic blocks and interconnects are
time-multiplexed in Trimberger’s architecture. In terms of the
supporting EDA flow, Trimberger’s work can be considered as
close to ours in both works, time-multiplexing is scheduled
after technology mapping and before placement. In our
work, time-multiplexing is scheduled during routing, while
Francis’ work does it after routing.

Shen et al. present a serial-equivalent static and dynam-
ic parallel router[8]. This router provides a significant speedup
in routing and can achieve the same result as the serial
router. They also try box expansion and grid partitioning to
speed up parallel FPGA routing[9]. Shen et al. use parallel re-
cursive partitioning to accelerate FPGA routing that can
achieve 7.06× speed up using 32 processers[10]. They pro-
pose a GPU-based parallel routing algorithm[11] and achieved
1.57× speedup improvement than VPR router. Based on
PathFinder kernel, they develop Raparo, which is an angle
based region partitioning[12]. Results show that it can provide
16× speedup when scaling to 32 processor cores. They also ex-
ploit strictly-ordered partitioning in parallelizing FPGA rout-
ing called Megrez and achieve 15.13× speed up on GPU
without influence on quality[13].

Vercruyce et al. propose CRoute[14], which is a connec-
tion-based timing-driven router. This routing algorithm can re-
duce total wire-length and increase the maximum clock fre-
quency at the same time. Wang et al. propose a new ap-
proach[15] based on the PathFinder algorithm. They only
reroute illegal paths during each routing iteration and can re-
duce 68.5% routing runtime on average. Patil et al. use a heur-
istic method in routing for hybrid FPGA networks[16]. They
schedule data streams efficiently to increase the bandwidth
and then achieve 11% stream bandwidth improvement on
five benchmark circuits. Chaplygin et al. propose an FPGA rout-
ing block optimization with a given number of trace
signals[17]. Farooq et al. apply the time-multiplexing techno-
logy to multi-FPGA prototyping routing for more complic-
ated designs[18]. Omam et al. use RRAM-based switches and de-
crease 56% path delay compared to CMOS base switches[19].
Chen et al. explore state-of-the-art research directions for FP-
GA placement and routing[20]. Huriaux et al. evaluate the rout-
ing of I/O signals of large applications through column inter-
faces in embedded FPGA fabrics[21]. Kashif et al. compare a
completely connected graph and time-multiplexing nets on
multi-FPGA system[22]. Results show that completely connec-

ted graphs can achieve higher performance and time-multi-
plexing can provide a better cost/performance ratio.

3. Target FPGA architecture

Fig. 1 illustrates an island-style FPGA, which is the base
of our target time-multiplexed FPGA architecture. The only dif-
ference between this island-style architecture and ours is that
all wires in our design can be time-multiplexed. In the conven-
tional island-style FPGAs, vertical and horizontal routing chan-
nels surround logic blocks from all four sides containing mul-
tiple tracks. We define channel width as the total number of
tracks in a channel. Every track has multiple wire segments. A
switch block is arranged at every intersection of a vertical chan-
nel and a horizontal channel. Programmable switches are
placed in switch blocks and connection blocks to implement
configurable routing. Logic block pins are connected to rout-
ing channels through connection blocks.

3.1. Clock cycle and microcycle

Mc Mc

In our new architecture, we divide a clock cycle into mul-
tiple microcycles. Different signals can occupy the same wire
if this wire is multiplexable, and they can use the same wire
at different microcycles in a clock cycle. We use a similar defini-
tion of microcycle and clock cycle as in Trimberger et al.’s
work[2]. A clock cycle is constrained by the critical path delay.
We defined , which means a clock cycle has micro-
cycles.

3.2. Time-multiplexed wires

w
N N N N

N [T/, T/]
N[T/, T/]
N N T

A route of nets is usually made up of many segments of
wires. One segment of a wire can only be occupied between
the time that the signal arrives and leaves in one clock cycle.
In the TM-ARCH FPGAs, different signals can occupy the same
segment of wires at different time if this wire segment can be
multiplexed. Fig. 2(a) illustrates this. We first define that one
clock cycle consists of two microcycles in this TM-ARCH archi-
tecture device. is multiplexable which is contained in both
net and . This condition is permitted because and
can use the same wire segment at different microcycles in
one clock cycle. occupies this wire at , which is in
the first microcycle. occupies the wire segment at

 in the second microcycle. Fig. 2(b) describes the
time intervals in which and use the wire. means the
period of a clock cycle.

Connection

block

Switch

block

Logic

block

Fig. 1. Island-style architecture, which is the base of TM-ARCH with the
time-multiplexed interconnects.

2 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022405

R Q Luo et al.: A routing algorithm for FPGAs with time-multiplexed interconnects

3.3. TM switch

A time-multiplexing switch (TM switch) is the key to imple-
ment time-multiplexing at the hardware level. Compared
with conventional FPGAs, a TM switch has two more features:
latching data and associating with multiple contexts.

3.3.1. Multiple contexts
Mc

Mc

In TM-ARCH, a TM switch can have at most contexts.
As time passes, the state of TM switch changes among the

 contexts. This unique feature helps achieve the time-multi-
plexing of wires in our architecture. Fig. 2(c) shows an ex-
ample of different states of TM switches (S , S , S , and S).
This example can be time-multiplexed in the architecture
shown in Fig. 2(a). In this condition, the TM switches can
have two contexts, and change between them in one clock
cycle.

3.3.2. Latching capability

 w − w − w
N

w − w − w

w − w − w N
w

w

A TM switch can latch the current logic value when it
switches from on to off state. Fig. 2 illustrates the necessity of
latching data. In the first microcycle, the state of TM switches
S and S are on. This means the connection is
maintained for the signal . In the second microcycle, TM
switches S and S are turned off, while S and S are turned
on. Hence, the connection is turned on while

 is turned off for the signal . In order to pre-
vent from the floating state, the switch S must to work as
a driver. When it transits from on to off, S will latch the cur-
rent value, then drive the segment.

Francis’ architecture[9] can provide the latching capabil-
ity, but it is provided by wires which are different from ours.
Our architecture does not have to apply latches at LUT in-
puts, because our TM switches can provide the latching func-
tion.

4. Time-multiplexing-aware timing-driven-
routing algorithm

4.1. Problem formulation

G(V, E)
V

E

d Cap

Cap

 is a routing-resource graph which is used to illus-
trate routing resources and their connections in TM-ARCH.
is the set of vertices (or nodes) which correspond to CLB pins
or wires. The set of edges corresponds to switches. During
the association between every node and edge, there should
be a delay time . is the capacity of a node, which is
defined as the maximum number for different nets that can oc-
cupy this node in one microcycle. We set equals to 1 for
the nodes that correspond to the wires in our architecture.
This is because at any microcycle a wire must be used by at
most one net. Fig. 3 illustrates the routing-resource graph of

Mc = a TM-ARCH device when . The number listed next to
the node name shows the capacity of this node. It should be
noted that the sink and source are two different dummy
nodes. A capacity of 2 is allocated to simulate the logical equi-
valence of the two input pins of a 2-input LUT.

i
Ni

Si Sij Ni

V Ni
RTi G

Si Sij

For a signal which is needed to be optimized in TM-
ARCH, its net can be considered as a set of terminals, includ-
ing source terminal and sink terminals . constitutes a
subset of . A routing solution for net can be considered
as a directed routing tree embedded in and connect-
ing with all .

The router of TM-ARCH is designed for optimizing the cir-
cuit delay and routing all the nets at the same time. The
router should identify and then schedule multiple qualified
nets to a time-multiplex wire because the wire is time-multi-
plexed in TM-ARCH architecture.

4.2. Occupation bitmap

Our algorithm can identify a net (or a signal) that can be
multiplexed to a wire with other signals. We record the time
when a signal arrives and leaves. This helps us to get the sig-
nal’s occupation bitmap, which shows at which microcycle
this signal may occupy this wire.

4.2.1. Arrival and leave time
A Maze router[23] is the core of our algorithm, the Pathfind-

er algorithm[24] and the VPR 5 algorithm. This router routes a
net by wave-expanding from source and throughout the rout-
ing-resource graph until the wave-front reaches the sink of
the net. It then back-traces the path and records it from its
source to sink.

tarrival tleave
tarrival

tleave

We compute two timing values: and for a
wire which is being expanded. records when the sig-
nal arrives at this wire. Furthermore, records when the
signal leaves this wire. The two values can be denoted as:

tarrival(n) = ∑
m∈source(i)↝n

dm + Tarrival(source(i)), (1)

tleave(n) = tarrival(n) + dn, (2)

i n

i dn n dn

tarrival dn

In Eq. (1), the first item on the right side indicates the
time needed from the source of net to node . The second
item indicates the time when a signal arrives at the source of
net . In Eq. (2), is the delay of node . The value of is il-
lustrated in the FPGA architecture files from its manufacturer.
We get the signal leave time by adding and . In this
work, we consider the delay as constant. All timing values in
both equations are the maximum possible delay. We record
the time that a signal arrives and leaves for every segment in
the net. One wire may be included by the routes of multiple
nets during the routing process. At this time, we record all

w2 w3

w4 w5

w1

S2

S1 S3

S4

N1

N2

N1 N2

CLB
0

1st half cycle

2nd half cycle

ON

OFF

S1

ON

OFF

S2

ON

OFF

S3

ON

OFF

S4

T/4 T/3 T/2 2T/3

(b)

(c)

(a)

3T/4 T

CLB

N N
N N

Fig. 2. (a) Signals and occupy a wire at different time. (b) In time
domain, and do not overlap. (c) TM switches’ different states.

Wire2

Wire1
Wire1 (1)

Wire3 (1)
Wire4 (1)

Wire2 (1)

In1 (1) In2 (1)

Sink (2)

Wire3 Wire42-LUT

Out

Out (1)

Source (1)

In1 In2

Fig. 3. Routing resource graph of TM-ARCH architecture.

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022405 3

R Q Luo et al.: A routing algorithm for FPGAs with time-multiplexed interconnects

the time that signal arrives and leaves from the wire.

4.2.2. Occupation bitmap

tarrival tleave
n

Mc

We can compute the occupation bitmap by using all the
 and values we record. This bitmap can be used to

represent the occupation of a wire by one net at different
microcycles. The bitmap is an array that consists of ele-
ments. Each element corresponds to one microcycle: the first
element corresponds to the first microcycle, and the last ele-
ment corresponds to the last microcycle.

Each element in the bitmap array can be 0 or 1. “1”
means that the net uses the wire at the corresponding micro-
cycle. “0” means that the net does not occupy.

We use the following function to calculate each element
in the array,

Bitmap[i] = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
, if tarrival > iTucycle + Tgb,

, else if tleave < (i −)Tucycle − Tgb,

, else,
(3)

Tucycle = Tcrit/Mc. (4)

TgbWe also use as the guard band for the skew of the mi-
crocycle clock network. The basic idea of this equation is that
the net will only occupy this wire at a particular microcycle.

begin
end

begin end

Fig. 4 gives the pseudo code for computing bitmaps. We
first set all bitmap array elements to zero. Next, we compute
which microcycle signal will arrive and give it to variable

. Then we compute which microcycle signal will leave,
and give it to a variable . Finally, we assign all elements
between and to 1, which means in these micro-
cycles this net occupies the wire.

i
i

We also record the bitmap array for every wire in net . Be-
cause we record the time when net ’s signal arrives and
leaves the wire, we use these data to calculate the bitmap.
We record multiple occupation bitmaps if this wire is occu-
pied by the routes of multiple nets.

4.3. Congestion penalties at microcycles

Because wires in our architecture can be multiplexed by
nets, our algorithm can record how many nets are currently us-
ing this wire at every microcycle by using the micro occu-
pancy. This micro occupancy illustrates the degree of conges-
tion at each microcycle for a wire. Our algorithm can com-
pute the congestion penalties of wire at each microcycle
based on its micro occupancy values when the wavefront ar-
rives at the wire. Larger micro occupancy will cause larger con-
gestion penalty.

4.3.1. Micro occupancy
McMicro occupancy is a matrix that consists of ele-

ments for each wire. Each element corresponds to one micro-
cycle and takes an integer value, which means how many
nets are currently occupying this wire at the corresponding
microcycle.

n i
n

Firstly we set all micro occupancy elements to zero.
When wire is included in the route of net , the micro occu-
pancy of will be updated by the bitmap in section IV-B.

uOcc[j] = { uOcc[j] + , if Bitmap[j] = ,

uOcc[j], else,
(5)

j [,Mc] j
j

j j

where is in . If the -th element of bitmap is 1, it
means this net uses this wire in the -th microcycle and then
-th element of micro occupancy’s -th element will be in-

creased by one.
i

i
When a net is being disassembled, the micro-occupa-

tion of all wires in the route of net is updated.

uOcc[j] = { uOcc[j] − , if Bitmap[j] = ,
uOcc[j], else,

(6)

j [,Mc] i j
j

where is in . Since this wire was used by net in the -
th microcycle, we should decrease the -th element of micro
occupancy by one.

4.3.2. Historical and present congestion penalty
With the records of micro occupancy, we can calculate

the historical and present congestion penalties of a wire in
each microcycle. The functions we use are shown as follows:

p[j] = +max(, pfac[uOcc[j] + − Cap]), (7)

h[j]i = { , i = ,

h[j]i− +max(, hfac[uOcc[j] − Cap]), i > .
(8)

j [,Mc] p[j]
h[j]

where is in . We will update for all wires affected
if there still have any net disassembled like VPR. We also up-
date of all wires only after one entire iteration.

hfac pfacThe routing schedule shows what and can be in
each routing iteration. Table 1 illustrates the routing sched-
ule which is also used in VPR 5.

4.4. Multiplexing-aware congestion cost

Cost calculation of multiplexing-aware congestion is an in-
novation of this algorithm. We do not consider it as conges-
tion if a wire in our architecture is used by two more signals
and they occupy the wire at different time.

Fig. 5 shows the pseudo code for computing congestion
cost of wire in the wave expansion process. In this pseudo

tarrival: Signal arrival time at wire n;

tleave: Signal leave time at wire n;

Tcrit: Circuit critical path delay;

Mc: Number of microcycles in a clock cycle;

for (i = 1; i < = Mc; i + +) {

 Bitmap [i] = 0;

}

Tucycle = Tcrit/Mc;

for (i = 1; i < = Mc; i + +) {

 if (tarrival > (i − 1) * Tucycle + Tgb &&

 tarrival < i * Tucycle) {

 begin = i;

 break;

 }

}

for (i = 1; i <= Mc; i + +) {

 if (tleave > (i − 1) * Tucycle &&

 tleave < i * Tucycle − Tgb) {

 end = i;

 break;

 }

}

for (i = begin; i < = end; i + +) {

Bitmap [i] = 1;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Fig. 4. Pseudo code for computing the occupation bitmaps.

4 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022405

R Q Luo et al.: A routing algorithm for FPGAs with time-multiplexed interconnects

code, we should have already computed the bitmap array
and the newest historical and present congestion penalties
for every microcycle.

Lines 1–4 look for the largest historical congestion pen-
alty. Lines 5–10 look for the position where the first “1” value
is occurred in a bitmap, and save it to begin index. This
means from which microcycle the wire starts to be occupied.
Lines 11–16 saves the end index in a similar way, which
means at which microcycle the wire occupation ends. Lines
17–20 record the largest present congestion penalty
between the begin microcycle and end microcycle. Line 21
computes the overall congestion cost by multiplying the
largest historical and present congestion penalties and the
base cost of wire.

cCost = pn × hn × bn. (9)

hn

begin end

Eq. (9) is used after the VPR router obtains the new conges-
tion cost. We use the largest historical congestion penalty in
all microcycles as and use the largest present congestion
penalty in the microcycles during which the wire is occupied.
We only award the congestion of occupying wires in one net
from the -th microcycle until the -th microcycle.

4.5. Overall cost function

The overcall cost function is the sum of two factors as in
a VPR router. The first factor is the congestion sensitive cost,
which is computed in Section 4.5. The second factor is the
delay sensitive cost. We use the wire’s intrinsic delay as the
delay cost and weighs the two parts based on timing critical-
ity. Eq. (10) shows the overall cost function in our algorithm.

c(n) = Crit(i, j) × d(n) + [− Crit(i, j)] × cCost(n). (10)

4.6. Legal routing solution

Our routing algorithm will check whether the current rout-
ing is effective after each iteration. If it is, our router iteration
ends and keeps this solution. But if not, the router will start a
new turn iteration.

A valid routing solution should not contain any over-
used routing resources. Although a wire can be multiplexed
to be used by multiple nets, it is not overused as long as it is
occupied by at most one net in any microcycle. Our router
checks if Eq. (11) are met in every microcycle.

uOcc[i] ⩽ , i ∈ [,Mc]. (11)

4.7. Pseudo code

Fig. 6 is the pseudo code of time-multiplexing-aware rout-
ing algorithm. For each signal in a net, we firstly use the
maze router to route one signal from its source to sink over
the routing-resource graph and record the path it has expan-
ded. For each wire being expanded, we also record the ar-
rival time and leave time to calculate the occupation bitmap.
We use the bitmap to compute and update congestion penal-
ties on this wire and then evaluates this wire's overall cost.
We aim to decrease the criticality of the connection while do-
ing the wave expansion. For all nodes in each net, we up-

Bitmap [1..Mc]: Bitmap array of net i at wire n;

Pn [1..Mc]: Present congestion penalty array of wire n;

hn [1..Mc]: Historical congestion penalty array of wire n;

bn: Base cost of wire n;

accCost = 0.;

for (i = 1; i < = Mc; i + +) {

 accCost = max (accCost, hn [i])

}

for (i = 1; i < = Mc; i + +) {

 if (Bitmap [i] = = 1) {

 begin = i;

 break;

 }

}

for (i = begin; i < = Mc; i+ +) {

 if (Bitmap [i] = = 0) {

 end= i − 1;

 break;

 }

}

presCost = 0.;

for (i = begin; i < = end; i + +) {

 presCost = max (presCost, pn [i])

}

cCost = presCost * accCost * bn;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Fig. 5. Pseudo code for computing the congestion cost.

Gt: Circuil timing graph

Q(i): Priority queue used while routing net Ni

RT(i): Routing trcc of net Ni

Source(i): Source of net Ni

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Back-annotate placement delays of all nets into Gt;

Propagate timing in Gt, and compute Tcrit;

Crit(i, j) = 1.0 for all i and j;

while (overused resources exist) {

 for (each net Ni) {

 Rip-up RT(i), and update p(n) for all nodes n in RT(i);

 RT(i) = Source(i);

 for (each sink j of Ni in decreasing Crit(i, j) order) {

 Q(i) = RT(i);

 while (sink(i, j) not found) { /* Wave expansion */

 Remove lowest cost node, m, from Q(i);

 for (all fanout nodes n of node m) {

 Calculate tarrival and tleave for n;

 Calculate Bitmap (i, n) using current Tcrit;

 Evaluate c(n);

 Add n to the Q(i);

 }

 } /* Routing of one sink is finished. */

 for (all nodes, n, in path from RT(i) to sink(i, j)) {

 Update p(n);

 Add n to RT(i);

 Calculate tarrival and tleave for n;

 Calculate Bitmap(i, n) using current Tcrit;

 }

 Update Elmore delay of RT(i);

 Update tarrival and tleave for all n in RT(i);

 Update Bitmap(i, n) all n in RT(i);

 } /* Routing of one net is finished. */

 } /* Routing of all nets are finished. */

 Back-annotate Elmore delays of RT(i) of all nets i into Gt;

 Propagate timing in Gt, and compute Tcrit;

 Update Bitmap(i, n) for all nets Ni on all nodes n;

 Update h(n) for all nodes n;

 Update Crit(i, j);

} /* End of one routing iteration*/

Fig. 6. Pseudo code for computing the congestion cost.

Table 1. Resource utilization of the system.

Routing schedule Value
pfac 0.5 in the first and the second routing

iteration; 1.3 times its previous value from
the third iteration onwards.hfac
1.0 for all the iterations.

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022405 5

R Q Luo et al.: A routing algorithm for FPGAs with time-multiplexed interconnects

date its occupied time and Elmore delay after this net has
been completely routed. After finishing routing all nets, we
compute propagate timing in circuit timing graph and calcu-
late critical path delay. If there is no more overused re-
sources or reach the maximum number of iterations, the pro-
gram will stop and return the final results.

Lines 6 and 20 show that this algorithm can compute the
present congestion penalties at each microcycle for wires.
Lines 14, 23, 27, 32 illustrate the fact that our algorithm can
compute and update the occupation bitmap on wires. Lines
13, 22, and 26 are where our algorithm compute and update
the time of signal arrival and leaving. Line 15 reflects the fact
that this algorithm computes the time-multiplexing-aware con-
gestion cost for a wire and then analyzes overall cost of this
wire. Line 33 computes the historical congestion penalties at
microcycles. Finally, line 4 checks the routing algorithm if
there still have any remaining congested routing resources.
This has been detailed in Section 4. In addition, our router
can also check whether the next condition holds in every mi-
crocycle.

4.8. Algorithm analysis

In this part, we mainly focus on its unroutability detec-
tion, time complexity and memory requirement.

4.8.1. Unroutability detection
Our algorithm only declares the circuit is unroutable

after 50 iterations on the given FPGA like Pathfinder al-
gorithm. Because this process will take a long time, we will en-
hance our algorithm for quicker unroutability detection.

4.8.2. Time conplexity
The algorithm is based on iterations. In practice, the itera-

tion number is usually limited to a certain number of times.
Therefore, it is sufficient to analyze the iteration complexity
in this algorithm.

O(k log k) k

The pseudo-code in Fig. 6 shows that, every iteration is
made up of two parts. Netlist routing is the first (lines 5–29),
and post-processing is the second (lines 30–34). Netlist rout-
ing means running routing algorithm for every net in netlist.
Previous work shown that the complexity of the net routing al-
gorithm in Pathfinder is [3]. means how many ter-
minals does a net has. In the routing process, the extra compu-
tations included in our algorithm include computing signal’s
arrival and leave times and then computing the occupation bit-
map.

n
O(Mc) Mc

Mc

k
O(k log k)

From Section 4.2, we know that the time consume on a
routing-resource node is constant. We also know that the
complexity of computing bitmap is . means how
many microcycles does one user’s clock cycle have. In our
work, we limit to 8. As a result, we consider it takes con-
stant time to get the occupation bitmap. Taking the above in-
to consideration, we can know that, for a -terminal net, rout-
ing in our algorithm will typically take time, which
is same as in Pathfinder.

Tcrit

O(V + E) V
E

Next we will do post-processing. The main computation
is computing by doing static timing analysis on timing
graph in this part. We also used the critical path method
(CPM) which is used in VPR 5 algorithm. Sapatnekar et al.[25]

shown that the complexity of this algorithm is .
means the vertices number in the circuit timing graph, and
means the edges number in the timing graph.

O(C)
C

O(R) R

Back-annotation Elmore delay (line 30) will take
time for other operations in the post-processing portion,
where means how many connections between source and
sink have in this circuit. Calculating occupation bitmap and up-
dating historical congestion penalty of all nodes requires

 time. represents the nodes number in routing-re-
source graph.

4.8.3. Memory requirement
In our algorithm, FPGA routing-resource graph and cir-

cuit timing graph are requiring a substantial amount of main
memory requirement.

O(R)
R

We record many information for all nodes in the routing-
resource graph, such as its connectivity information, physical
information, congestion information, timing information and
some other information used for wave expansion. is the
memory requirement from routing-resource graph and
means nodes number in routing-resource graph.

O(V + E)
V

E

We record the timing information and connectivity inform-
ation for all vertex in timing graphs. For edges in timing
graph, we record the timing information and connectivity in-
formation. Typically, is the memory requirement for
timing graph. in this means vertices number in the circuit
timing graph, and means edges number in the timing
graph.

5. Algorithm validation

We verify our time-multiplexing-aware routing algorithm
through experiments. By using this algorithm, we implement
benchmark circuits for the TM-ARCH architecture. For compa-
rison, we also implement the same set of benchmark circuits
for conventional architectures. To achieve an easy and fair com-
parison, we use MCNC 20 benchmark circuits with a stand-
ard EDA flow.

5.1. Experimental setup

5.1.1. EDA flow
Fig. 7 shows our EDA flow. First, LUTs are packaged into

the cluster logic block using the TVPack tool in the VPR 5 pack-
age. Next, place the circuit using VPR 5. The wiring is per-
formed twice according to the same placement result. The
VPR 5 timing-driven router is used to route circuits to tradition-
al island FPGAs. TM-ARCH FPGAs with time-multiplexed inter-
connects are supported by our time-multiplexing-aware
router. We call these two routing branches as conventional
routing and time-multiplexing routing. Since then, we will
call VPR timing-driven router and our time-multiplexing-

Packing (VPR)

Placement (VPR)

Benchmark circuit

(technology mapped)

Routing

(TM-ROUTER)

tm_arch. xml

Results

arch. xml

Routing

(VPR-ROUTER)

Results

Fig. 7. (Color online) The TM-ARCH and TM-ROUTER evaluation frame-
work.

6 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022405

R Q Luo et al.: A routing algorithm for FPGAs with time-multiplexed interconnects

aware router as VPR-ROUTER and TM-ROUTER.
Mc

Mc

Mc
Clkf Clkf

Mc Mc

 is input to TM-ROUTER by command-line option. In
our experiment, we restrict the value of to be 2, 4, 6, or 8.
We think 8 is a reasonable upper limit because of two reas-
ons. First, a too large a means a very high-frequency clock

, because our architecture requires that frequency of
should be times the user’s clock. Second, too large a
will result in a large amount of area overhead. It can be seen
from the example implementation of the TM switch provided
in the paper.

5.1.2. Assumptions of FPGA architecture
In this work, we only consider similar FPGA architectures.

Even with this assumption, FPGA architecture’s design space
is still quite large, so we cannot fully study the time-multi-
plexed interconnects. In order to make the work easier to do,
we first fix a representative benchmark FPGA architecture.
The benchmark FPGA architecture is represented in Fig. 7 as
"arch.xml", which uses conventional interconnects. We re-
place all wires with our multiplexable wires, so we got the
TM-ARCH FPGA architecture shown in Fig. 7 as "tm_arch.xml".

We choose the XML file used in iFAR[26] as the baseline FP-
GA architecture. Table 2 shows main features of this FPGA ar-
chitecture.

5.2. Results

5.2.1. Minimum channel width
In this part of the experiments, a conventional routing

and the time-multiplexing routing perform a binary search to
find the minimum channel width for each circuit. VPR-
ROUTER routes circuits to FPGA with conventional architec-
ture to find the minimum channel width, and TM-ROUTER
does the same work on TM-ARCH FPGA. We set 50 as the max-
imum iterations number for both routing algorithms.

Wmin

W ′
min

Mc Mc

Table 3 shows the minimum channel width experiment-
al results. The numbers listed under “ ” column are the
minimum channel widths routed by VPR-ROUTER in the con-
ventional algorithm. Number listed under “ ” column are
that TM-ROUTER achieves for different values. When =
2, TM-ARCH FPGA does not have advantages over convention-
al architecture. TM-ARCH FPGA achieve slightly better results

Table 2. Main Features of Baseline FPGA Architecture.

Feature parameter Value/specification

LUT size 4
Logic block size 10
Logic block inputs 22
Amount of bias between horizontal and vertical channels No bias
Uniformity of routing channels in the same direction Uniform
Aspect ratio 1 : 1 (Assuming square logic blocks)
Segmentation distribution 100% length 4 wires
Switch types used Uni-directional single driver switches
Switch block topology Wilton
Switch block internal population 100%
Connection block internal population 100%

McTable 3. Minimum channel width for different values.

Parameter Mc = ,Wmin Mc = ,W ′
min Mc = ,W ′

min Mc = ,W ′
min Mc = ,W ′

min
Alu4 48 48 30 36 26
Apex2 62 62 36 34 22
Apex4 64 64 50 36 28
Bigkey 44 44 32 32 30
Clma 78 76 74 48 34
Des 44 42 34 32 32
Diffeq 38 36 34 32 30
Dsip 38 36 30 30 30
Elliptic 62 58 52 N.A. 34
Ex1010 74 74 60 40 34
Ex5p 68 68 48 34 22
Frisc 74 74 44 40 40
Misex3 54 54 42 26 22
Pdc 90 90 128 60 70
S298 34 34 28 28 20
S38417 48 48 50 26 22
S38584.1 50 50 48 26 22
Seq 60 60 48 26 22
Spla 74 72 N.A. 52 34
Tseng 46 46 40 34 32
Geo.Mean 56 55 44 34 29
Reduction – –1.78% –21.43% –39.28% –48.21%

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022405 7

R Q Luo et al.: A routing algorithm for FPGAs with time-multiplexed interconnects

for only 5 circuits (des, diffeq, dsip, elliptic, and tseng) in 20 cir-
cuits. This result is counter-intuitive, because we expect TM-
ARCH FPGA to result in the minimum channel width of all cir-
cuits.

Mc =

Wmin

We think that, in one clock cycle there are two micro-
cycles that can only supplies little opportunity to TM-ROUTER
to achieve time multiplexing of wires. Table 4, “ ” lists
the wire percentage used in the first two microcycles for
MCNC 20 benchmark circuits, when we divide a clock cycle in-
to two microcycles. The data are generated in the manner as
follows. We adjust VPR-ROUTER codes in order to record the
time when the signal occupies wire to the result. Then we
start VPR-ROUTER routing process with the minimum chan-
nel width listed in Table 3 column “ ”. After that, we use
a program to analyze the results and determine which micro-
cycle each line segment is used in according to Eq. (3). The pro-
gram also counts the portion of wires used in each micro-
cycle in the final routing.

Mc =

Table 4 shows that, in the first microcycle, 92.85% of the
wires are used, while in the second microcycle, only 5.17%
wires are used. This means that TM-ROUTER has very limited
opportunities for time-multiplexing in this condition. To imple-
ment time-multiplexing in FPGAs, our routing algorithm will
match the same wire in the first microcycle and the second
microcycle. Table 4 shows that used wire segments are most
likely to be used by net in the first microcycle, and less likely
to be used by another net in the second microcycle, so our
time-multiplexing-aware algorithm may less likely to imple-
ment time-multiplexing wires in this situation. Looking back
at Section 4, the signal does not be actively delayed by our
routing algorithm. But scheduling algorithm of Francis et al’s
does it to implement more time-multiplexing[9]. We can see
that, when a clock cycle is divided into four microcycles, Ta-
ble 4, column “ ”, tabulates the microcycle distribution
using the wires. The process of generating these data is simil-

Mc =

Mc =

ar to for . In this condition, the distribution between
the first and second microcycle seems more balanced than
when . This gives TM-ROUTER more opportunities to im-
plement time-multiplexing.

Mc

Mc =
Mc = Mc = Mc

TM-ARCH generally needs a smaller channel width from
 = 4. This follows our expectations that multiplex can lead

to minimum channel width reduction. The result will be more
significant when the division of microcycle is more detailed:
the reduction of minimum channel width is 19.86% (),
37.74% (), and 47.89% (). With increases,
one wire can be multiplexed by more nets, so fewer wires are
required to route a given number of nets.

5.2.2. Circuit critical path delay
FPGAs routing resources are often not heavily utilized in

order to reduce latency in real applications. So we use 20%
more minimum channel width than Table 3 to do the rout-
ing process. In this section, we also assume that TM switch
has same delay with its conventional switch.

Tcrit
T′crit
Mc =

Mc

Table 5 lists the critical path delays with low-stress rout-
ing for 20 benchmark circuits. “ ” column is the result of
the conventional architecture, while the “ ” columns is the
result the TM-ARCH architecture. When , the critical
path delay of TM-ARCH is slightly larger (1.13%) and the chan-
nel width used is slightly smaller (4.08%). However, when

 = 4, 6, and 8, the channel width uses by TM-ROUTER is re-
duced by 19.69%, 37.87%, and 46.97%. Moreover, the critical
path delay of TM-ROUTER can be moderately reduced: 1.79%,
3.84%, and 1.28%.

In conventional FPGAs, circuit critical path may not be
routed in the shortest path due to limited routing. This is true
even when low-stress wiring is performed. Unlike convention-
al FPGAs, the TM-ARCH architecture allows multiple signals
multiplex wires in different clock cycles. This effectively mitig-
ates its routing congestion. As a result, the circuit critical path

Mc = , Table 4. Percentages (%) of wire used in each individual microcycle for 20 benchmark circuits with .

Parameter
Mc = Mc =

1st 2nd 1st 2nd 3rd 4th

Alu4 94.59 4.67 56.04 29.64 4.19 0.45
Apex2 97.09 2.42 67.82 25.32 2.17 0.21
Apex4 87.35 10.56 28.13 56.96 9.45 1.00
Bigkey 93.65 4.77 61.57 28.13 4.77 0.00
Clma 96.50 2.97 68.86 25.69 2.83 0.12
Des 90.08 9.15 63.16 24.61 6.50 1.96
Diffeq 95.97 3.80 74.31 18.47 3.71 0.10
Dsip 94.70 4.28 59.70 31.89 4.04 0.18
Elliptic 95.35 4.46 87.51 7.36 3.65 0.73
Ex1010 90.04 8.67 23.65 64.19 7.98 0.51
Ex5p 82.63 14.85 21.70 56.98 12.71 1.99
Frisc 86.87 12.06 68.23 18.50 10.58 1.41
Misex3 93.09 5.60 52.19 33.60 4.64 0.80
Pdc 95.09 4.36 46.93 42.92 3.88 0.42
S298 85.82 13.48 63.21 21.00 9.76 3.16
S38417 92.87 6.60 65.09 24.77 5.83 0.67
S38584.1 97.41 1.88 73.30 19.91 1.59 0.26
Seq 97.50 2.20 69.24 24.66 1.99 0.17
Spla 95.98 3.60 49.20 41.06 3.31 0.25
Tseng 96.48 3.34 88.49 6.82 2.35 0.73
Geo.Mean 92.85 5.17 55.83 26.19 4.49 0.51

8 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022405

R Q Luo et al.: A routing algorithm for FPGAs with time-multiplexed interconnects

is likely to be routed in a shorter path.

6. Conclusion

In this paper we propose a time-multiplexing FPGA archi-
tecture and its routing algorithm. Our algorithm actively identi-
fies the qualified interconnects that can be multiplexed on
our new FPGA architecture. We have validated the architec-
ture and algorithm by implementing it as a multiplexing-
aware router and using this router to implement benchmark
circuits to FPGAs with time-multiplexed interconnects. The res-
ults show that compared with an existing router targeting a
conventional island-style architecture, 38% smaller minimum
channel width and 3.8% smaller circuit critical path delay can
be achieved.

References

Lemieux G, Lewis D. Design of interconnection networks for pro-
grammable logic. Dordrecht: Kluwer Academic Publishers, 2004

[1]

Trimberger S, Carberry D, Johnson A, et al. A time-multiplexed FP-
GA. The 5th Annual IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, 1997, 22

[2]

Betz V, Rose J. VPR: A new packing, placement and routing tool
for FPGA research. International Workshop on Field Program-
mable Logic and Applications. Springer, Berlin, Heidelberg, 1997,
213

[3]

Luu J, Kuon I, Jamieson P, et al. VPR 5.0: FPGA CAD and architec-
ture exploration tools with single-driver routing, heterogeneity
and process scaling. ACM Trans Reconfig Technol Syst, 2011, 4(4),
32

[4]

Trimberger S. Scheduling designs into a time-multiplexed FPGA.
Proceedings of the 1998 ACM/SIGDA Sixth International Symposi-
um on Field Programmable Gate Arrays, 1998, 153

[5]

Lin C C, Chang D, Wu Y L, et al. Time-multiplexed routing re-
sources for FPGA design. Proceedings of Custom Integrated Cir-

[6]

cuits Conference, 1996, 152
Francis R, Moore S, Mullins R. A network of time-division multi-
plexed wiring for FPGAs. Proceedings of the Second ACM/IEEE In-
ternational Symposium on Networks-on-Chip, 2008, 35

[7]

Shen M, Zhang W, Luo G, et al. Serial-equivalent static and dynam-
ic parallel routing for FPGAs. IEEE Trans Comput-Aid Des Integr Cir-
cuits Syst, 2018

[8]

Shen M, Luo G, Xiao N. Exploiting box expansion and grid partition-
ing for parallel FPGA routing. 2018 IEEE 26th Annual Internation-
al Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), 2018, 209

[9]

Shen M, Luo G. Accelerate FPGA routing with parallel recursive par-
titioning. Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design, 2015, 118

[10]

Shen M, Xiao N. Fine-grained parallel routing for FPGAs with select-
ive expansion. 2018 IEEE 36th International Conference on Com-
puter Design (ICCD), 2018, 577

[11]

Shen M, Xiao N. Raparo: resource-level angle-based parallel rout-
ing for FPGAs. 2019 IEEE 27th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM),
2019, 312

[12]

Shen M, Luo G. Megrez: Parallelizing FPGA routing with strictly-
ordered partitioning. 2017 IEEE 25th Annual International Symposi-
um on Field-Programmable Custom Computing Machines (FC-
CM), 2017, 27

[13]

Vercruyce D, Vansteenkiste E, Stroobandt D. CRoute: a fast high-
quality timing-driven connection-based FPGA router. 2019 IEEE
27th Annual International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), 2019, 53

[14]

Wang D, Duan Z, Tian C, et al. A runtime optimization approach
for FPGA routing. IEEE Trans Comput-Aid Des Integ Circuits Syst,
2017, 37(8), 1706

[15]

Patil S B, Liu T, Tessier R. A bandwidth-optimized routing al-
gorithm for hybrid FPGA networks-on-chip. 2018 IEEE 26th Annu-
al International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), 2018, 25

[16]

Chaplygin Y, Novozhilov I, Losev V, et al. Algorithm for design[17]

McTable 5. Minimum channel width for different values.

Parameter
Mc = Mc = Mc = Mc = Mc =

Wls Tcrit W ′
ls T ′

crit W ′
ls T ′

crit W ′
ls T ′

crit W ′
ls T ′

crit
Alu4 58 3.31 58 3.31 36 3.31 44 3.23 32 3.45
Apex2 74 3.90 74 3.90 46 3.69 44 3.69 26 3.65
Apex4 76 3.80 76 3.80 58 3.13 40 3.20 32 3.20
Bigkey 52 1.80 52 1.87 38 1.80 38 1.80 38 1.80
Clma 94 6.74 94 6.74 88 6.63 58 6.70 44 6.70
Des 52 2.86 48 N.A. 40 2.78 38 2.85 38 2.85
Diffeq 46 4.44 44 4.51 40 4.37 38 4.44 36 4.37
Dsip 46 1.73 44 1.73 36 1.80 36 1.80 36 1.80
Elliptic 74 6.22 70 5.52 62 5.66 N.A. N.A. 40 5.37
Ex1010 88 4.42 88 4.42 72 4.49 48 N.A. 40 4.42
Ex5p 82 3.55 82 3.55 58 3.34 40 3.23 26 3.37
Frisc 88 7.63 88 7.63 52 7.42 48 7.42 48 7.49
Misex3 64 3.13 64 3.13 50 3.06 32 3.20 26 3.27
Pdc 108 5.26 108 5.26 154 4.49 72 4.49 84 4.49
S298 40 N.A. 40 N.A. 34 6.14 34 6.17 24 6.07
S38417 58 4.68 58 4.47 60 4.47 32 4.61 26 4.40
S38584.1 60 3.71 60 3.71 58 N.A. 32 3.64 26 3.65
Seq 72 3.13 72 3.13 58 3.06 32 3.20 26 3.06
Spla 88 4.46 88 4.46 N.A. N.A. 62 4.14 40 4.07
Tseng 56 4.43 52 4.43 48 4.43 40 4.43 38 4.43
Geo.Mean 66 3.90 65 3.95 53 3.83 41 3.75 35 3.85
Reduction N.A. N.A. –1.51% 1.28% –19.69% –1.79% –37.87% –3.84% -46.97% -1.28%

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022405 9

R Q Luo et al.: A routing algorithm for FPGAs with time-multiplexed interconnects

http://dx.doi.org/10.1145/2068716.2068718
http://dx.doi.org/10.1145/2068716.2068718
http://dx.doi.org/10.1109/TCAD.2018.2887050
http://dx.doi.org/10.1109/TCAD.2018.2887050
http://dx.doi.org/10.1109/TCAD.2018.2887050
http://dx.doi.org/10.1109/TCAD.2018.2887050
http://dx.doi.org/10.1109/TCAD.2018.2887050
http://dx.doi.org/10.1109/TCAD.2017.2768416
http://dx.doi.org/10.1109/TCAD.2017.2768416
http://dx.doi.org/10.1145/2068716.2068718
http://dx.doi.org/10.1145/2068716.2068718
http://dx.doi.org/10.1109/TCAD.2018.2887050
http://dx.doi.org/10.1109/TCAD.2018.2887050
http://dx.doi.org/10.1109/TCAD.2018.2887050
http://dx.doi.org/10.1109/TCAD.2018.2887050
http://dx.doi.org/10.1109/TCAD.2018.2887050
http://dx.doi.org/10.1109/TCAD.2017.2768416
http://dx.doi.org/10.1109/TCAD.2017.2768416

and structure optimization of the FPGA routing block with a giv-
en number of trace signals. 2019 IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering (EICon-
Rus), 2019, 1589
Farooq U, Chotin-Avot R, Azeem M, et al. Using timing-driven
inter-FPGA routing for multi-FPGA prototyping exploration. 2016
Euromicro Conference on Digital System Design (DSD), 2016, 641

[18]

Omam S R, Tang X, Gaillardon P E, et al. A study on buffer distribu-
tion for RRAM-based FPGA routing structures. 2015 IEEE 6th Lat-
in American Symposium on Circuits and Systems (LASCAS), 2015,
1

[19]

Chen S C, Chang Y W. FPGA placement and routing. Proceedings
of the 36th International Conference on Computer Aided Design,
2017, 914

[20]

Huriaux C, Sentieys O, Tessier R. Effects of I/O routing through
column interfaces in embedded FPGA fabrics. 2016 26th Interna-

[21]

tional Conference on Field Programmable Logic and Applica-
tions (FPL), 2016, 1
Kashif A, Khalid M A S. Experimental evaluation and comparison
of time-multiplexed multi-FPGA routing architectures. 2016 IEEE
59th International Midwest Symposium on Circuits and Systems
(MWSCAS), 2016, 1

[22]

Palczewski M. Plane parallel A* maze router and its application to
FPGAs. Proceedings 29th ACM/IEEE Design Automation Confer-
ence, 1992, 6911

[23]

McMurchie L, Ebeling C. PathFinder: a negotiation-based perform-
ance-driven router for FPGAs. Proceedings of the 1995 ACM Third
International Symposium on Field-Programmable Gate Arrays,
1995, 111

[24]

Sapatnekar S. Timing. Springer Science & Business Media, 2004[25]
Kuon I, Rose J. iFAR –intelligent FPGA architecture repository.
2008

[26]

10 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022405

R Q Luo et al.: A routing algorithm for FPGAs with time-multiplexed interconnects

