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Abstract: Previous  studies  show  that  interconnects  occupy  a  large  portion  of  the  timing  budget  and  area  in  FPGAs.  In  this
work, we propose a time-multiplexing technique on FPGA interconnects. In order to fully exploit this interconnect architecture,
we propose a  time-multiplexed routing algorithm that  can actively  identify  qualified nets  and schedule them to multiplexable
wires.  We  validate  the  algorithm  by  using  the  router  to  implement  20  benchmark  circuits  to  time-multiplexed  FPGAs.  We
achieve a 38% smaller minimum channel width and 3.8% smaller circuit critical path delay compared with the state-of-the-art ar-
chitecture router when a wire can be time-multiplexed six times in a cycle.
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1.  Introduction

Interconnect  and  logic  resources  can  be  seen  as  the  two
significant  parts  of  FPGAs.  Logic  blocks  are  used  to  imple-
ment  a  user  design.  Interconnect  resources  are  designed  to
achieve  connections  among  logic  blocks.  In  FPGAs,  logic  re-
sources  are  always  organized  as  arrays  of  blocks.  Intercon-
nect  resources  are  routing  switches  and  wires  grouped  into
channels.  FPGA  interconnects  (or  interconnection  network)
can  be  thought  of  as  a  programmable  network  of  signal
paths among FPGA logic resource ports.

Both  measurements  and  analyses  indicate  that  the  pro-
grammable  interconnections  contribute  the  most  to  the  FP-
GA  area,  latency,  and  power  consumption.  In  order  to
achieve  high  routability  with  reduced  routing,  FPGA  vendors
use  the  substantial  on-chip  area  to  route  programmable
switches and wires[1]. This is why interconnects out-weight lo-
gic  in  terms  of  power  budget  and  area.  FPGA  interconnects
are slow because they need to traverse a series of tracks con-
nected by switches to route among different logic blocks. Op-
timizing  the  interconnect  network  is  critical  because  it  has  a
profound impact on the performance of FPGAs.

Previous  work  by  Trimberger et  al.[2] has  illustrated  that
the utilization of logic resources in FPGA can be improved by
time-multiplexing,  which  inspires  us  to  apply  time-multiplex-
ing  to  FPGA  interconnection  networks  and  leads  to  our  new
architecture  and  routing  algorithm  that  we  will  introduce  in
this  paper.  We  notice  that  most  wires  are  only  used  for  a
short  period  in  a  clock  cycle.  The  delay  of  wire  for  a  signal  is

only  a  small  portion  in  a  clock  cycle.  So  we  can  better  utilize
the  interconnect  resources  by  time-multiplexing  signals.  It
can  also  improve  the  FPGA  performance  at  a  small  cost  of
the multiplexing circuitry complexity.

FPGAs with time-multiplexed interconnects require speci-
alized  electric  design  automation  (EDA)  algorithms  and  tools
to  support  them.  Existing  algorithms  and  tools  cannot  be  re-
used  in  their  present  forms  because  they  are  not  multiplex-
ing-aware.  In  this  paper,  we  propose  a  time-multiplexing-
aware routing algorithm. This algorithm is similar to VPR rout-
ing  algorithm[3].  Unlike  the  VPR  algorithm,  our  algorithm  can
add  the  time-multiplex  feature  to  the  algorithm  and  imple-
ment  it.  In  order  to  achieve  this  feature,  we  also  design  TM
switches  which  are  described  in  an  architecture  file.  We
define a bitmap for signals in our design, which is a new tech-
nique  and  can  add  the  scheduling  capability  to  the  VPR  al-
gorithm.  This  algorithm  can  be  seen  as  timing-driven  be-
cause  it  has  a  delay-sensitive  term  in  its  multiplexing-aware
congestion cost function.

We  also  validate  our  proposed  routing  algorithm  experi-
mentally.  We evaluate  our  TM-ARCH FPGAs by using our  TM-
router to replace the conventional VPR router in a standard FP-
GA  EDA  flow.  We  also  use  the  VPR  5  router[4] as  a  comparis-
on  on  the  same  set  of  benchmark  circuits  with  conventional
architecture.  Experimental  results  reveal  that  we  only  use
65% average minimum channel width of conventional architec-
tures  on average and can achieve  3.8% smaller  circuit  critical
path delay on average.

The rest of this paper is as follows. Section 2 introduces ex-
isting FPGA architectures and their EDA algorithms. Section 3
briefly  introduces  TM-ARCH  architecture.  Section  4  proposes
our time-multiplexing-aware routing algorithm. Section 5 int-
roduces  what  we  have  done  to  validate  this  algorithm,  and
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also  presents  experimental  results.  Finally,  Section  6  con-
cludes this paper.

2.  Related work

Previous  work  on  time-multiplexed  FPGA[2] has  been
done.  Trimberger et  al. propose  both  time-multiplexed  inter-
connects  and  configurable  logic  blocks  (CLBs)  with  the  Xilinx
XC4000E  FPGA  family.  To  facilitate  mapping  user  designs  in-
to  time-multiplexed  architecture,  a  scheduling  algorithm  is
presented[5] that is based on list scheduling. Lin et al. also ap-
ply  time-multiplexing  to  Xilinx  4000  architecture  FPGA[6],  but
they only time-multiplex routing resources.  Even so,  they still
have  achieved  30%  reduction  of  channel  density.  Francis
et  al.[7] apply  time-multiplexed interconnects  to  an Altera  FP-
GA,  which  is  similar  to  our  architecture  proposed  in  this  pa-
per. Only interconnects are time-multiplexed in ours, Lin's and
Francis’  work,  while  both  logic  blocks  and  interconnects  are
time-multiplexed in Trimberger’s  architecture.  In terms of the
supporting EDA flow, Trimberger’s work can be considered as
close  to  ours  in  both  works,  time-multiplexing  is  scheduled
after  technology  mapping  and  before  placement.  In  our
work,  time-multiplexing  is  scheduled  during  routing,  while
Francis’ work does it after routing.

Shen et  al. present  a  serial-equivalent  static  and  dynam-
ic parallel  router[8].  This router provides a significant speedup
in  routing  and  can  achieve  the  same  result  as  the  serial
router.  They  also  try  box  expansion  and  grid  partitioning  to
speed  up  parallel  FPGA  routing[9].  Shen et  al. use  parallel  re-
cursive  partitioning  to  accelerate  FPGA  routing  that  can
achieve  7.06×  speed  up  using  32  processers[10].  They  pro-
pose a GPU-based parallel  routing algorithm[11] and achieved
1.57×  speedup  improvement  than  VPR  router.  Based  on
PathFinder  kernel,  they  develop  Raparo,  which  is  an  angle
based region partitioning[12].  Results show that it  can provide
16× speedup when scaling to 32 processor cores. They also ex-
ploit  strictly-ordered  partitioning  in  parallelizing  FPGA  rout-
ing  called  Megrez  and  achieve  15.13×  speed  up  on  GPU
without influence on quality[13].

Vercruyce et  al. propose  CRoute[14],  which  is  a  connec-
tion-based timing-driven router. This routing algorithm can re-
duce  total  wire-length  and  increase  the  maximum  clock  fre-
quency  at  the  same  time.  Wang et  al. propose  a  new  ap-
proach[15] based  on  the  PathFinder  algorithm.  They  only
reroute illegal paths during each routing iteration and can re-
duce 68.5% routing runtime on average. Patil et al. use a heur-
istic  method  in  routing  for  hybrid  FPGA  networks[16].  They
schedule  data  streams  efficiently  to  increase  the  bandwidth
and  then  achieve  11%  stream  bandwidth  improvement  on
five benchmark circuits. Chaplygin et al. propose an FPGA rout-
ing  block  optimization  with  a  given  number  of  trace
signals[17].  Farooq et  al. apply  the  time-multiplexing  techno-
logy  to  multi-FPGA  prototyping  routing  for  more  complic-
ated designs[18]. Omam et al. use RRAM-based switches and de-
crease  56%  path  delay  compared  to  CMOS  base  switches[19].
Chen et  al. explore state-of-the-art  research directions for  FP-
GA placement and routing[20]. Huriaux et al. evaluate the rout-
ing of  I/O signals  of  large applications  through column inter-
faces  in  embedded  FPGA  fabrics[21].  Kashif et  al. compare  a
completely  connected  graph  and  time-multiplexing  nets  on
multi-FPGA  system[22].  Results  show  that  completely  connec-

ted  graphs  can  achieve  higher  performance  and  time-multi-
plexing can provide a better cost/performance ratio.

3.  Target FPGA architecture

Fig.  1 illustrates  an  island-style  FPGA,  which  is  the  base
of our target time-multiplexed FPGA architecture. The only dif-
ference between this island-style architecture and ours is that
all wires in our design can be time-multiplexed. In the conven-
tional island-style FPGAs, vertical and horizontal routing chan-
nels surround logic blocks from all  four sides containing mul-
tiple  tracks.  We  define  channel  width  as  the  total  number  of
tracks in a channel. Every track has multiple wire segments. A
switch block is arranged at every intersection of a vertical chan-
nel  and  a  horizontal  channel.  Programmable  switches  are
placed  in  switch  blocks  and  connection  blocks  to  implement
configurable routing.  Logic block pins are connected to rout-
ing channels through connection blocks.

3.1.  Clock cycle and microcycle

Mc Mc

In our new architecture, we divide a clock cycle into mul-
tiple  microcycles.  Different  signals  can  occupy  the  same  wire
if  this  wire  is  multiplexable,  and  they  can  use  the  same  wire
at different microcycles in a clock cycle. We use a similar defini-
tion  of  microcycle  and  clock  cycle  as  in  Trimberger et  al.’s
work[2].  A clock cycle is  constrained by the critical  path delay.
We  defined ,  which  means  a  clock  cycle  has  micro-
cycles.

3.2.  Time-multiplexed wires

w
N N N N

N [T/, T/]
N[T/, T/]
N N T

A  route  of  nets  is  usually  made  up  of  many  segments  of
wires.  One segment  of  a  wire  can only  be  occupied between
the time that  the signal  arrives  and leaves in  one clock cycle.
In the TM-ARCH FPGAs, different signals can occupy the same
segment of wires at different time if this wire segment can be
multiplexed. Fig.  2(a) illustrates  this.  We  first  define  that  one
clock cycle consists of two microcycles in this TM-ARCH archi-
tecture device.  is multiplexable which is contained in both
net  and .  This  condition is  permitted because  and 
can  use  the  same  wire  segment  at  different  microcycles  in
one clock cycle.  occupies this wire at , which is in
the  first  microcycle.  occupies  the  wire  segment  at

 in  the  second microcycle. Fig.  2(b) describes  the
time  intervals  in  which  and  use  the  wire.  means  the
period of a clock cycle.
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Fig. 1. Island-style architecture, which is the base of TM-ARCH with the
time-multiplexed interconnects.
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3.3.  TM switch

A time-multiplexing switch (TM switch) is the key to imple-
ment  time-multiplexing  at  the  hardware  level.  Compared
with conventional FPGAs, a TM switch has two more features:
latching data and associating with multiple contexts.

3.3.1.    Multiple contexts
Mc

Mc

   

In  TM-ARCH,  a  TM  switch  can  have  at  most  contexts.
As  time  passes,  the  state  of  TM  switch  changes  among  the

 contexts. This unique feature helps achieve the time-multi-
plexing  of  wires  in  our  architecture. Fig.  2(c) shows  an  ex-
ample  of  different  states  of  TM  switches  (S ,  S ,  S ,  and  S ).
This  example  can  be  time-multiplexed  in  the  architecture
shown  in Fig.  2(a).  In  this  condition,  the  TM  switches  can
have  two  contexts,  and  change  between  them  in  one  clock
cycle.

3.3.2.    Latching capability

  w − w − w
N

   
w − w − w

w − w − w N
w 


w

A  TM  switch  can  latch  the  current  logic  value  when  it
switches from on to off state. Fig. 2 illustrates the necessity of
latching data.  In the first microcycle,  the state of TM switches
S  and  S  are  on.  This  means  the  connection  is
maintained  for  the  signal .  In  the  second  microcycle,  TM
switches  S  and  S  are  turned  off,  while  S  and  S  are  turned
on.  Hence,  the  connection  is  turned  on  while

 is  turned  off  for  the  signal .  In  order  to  pre-
vent  from the floating state, the switch S  must to work as
a  driver.  When  it  transits  from  on  to  off,  S  will  latch  the  cur-
rent value, then drive the  segment.

Francis’  architecture[9] can  provide  the  latching  capabil-
ity,  but  it  is  provided  by  wires  which  are  different  from  ours.
Our  architecture  does  not  have  to  apply  latches  at  LUT  in-
puts, because our TM switches can provide the latching func-
tion.

4.  Time-multiplexing-aware timing-driven-
routing algorithm

4.1.  Problem formulation

G(V, E)
V

E

d Cap

Cap

 is  a  routing-resource graph which is  used to illus-
trate  routing  resources  and  their  connections  in  TM-ARCH. 
is the set of vertices (or nodes) which correspond to CLB pins
or  wires.  The  set  of  edges  corresponds  to  switches.  During
the  association  between  every  node  and  edge,  there  should
be  a  delay  time .  is  the  capacity  of  a  node,  which  is
defined as the maximum number for different nets that can oc-
cupy  this  node  in  one  microcycle.  We  set  equals  to  1  for
the  nodes  that  correspond  to  the  wires  in  our  architecture.
This  is  because  at  any  microcycle  a  wire  must  be  used  by  at
most  one  net. Fig.  3 illustrates  the  routing-resource  graph  of

Mc = a  TM-ARCH  device  when .  The  number  listed  next  to
the node name shows the capacity  of  this  node.  It  should be
noted  that  the  sink  and  source  are  two  different  dummy
nodes. A capacity of 2 is allocated to simulate the logical equi-
valence of the two input pins of a 2-input LUT.

i
Ni

Si Sij Ni

V Ni
RTi G

Si Sij

For  a  signal  which  is  needed  to  be  optimized  in  TM-
ARCH, its net  can be considered as a set of terminals, includ-
ing  source  terminal  and  sink  terminals .  constitutes  a
subset  of .  A  routing  solution  for  net  can  be  considered
as  a  directed  routing  tree  embedded  in  and  connect-
ing  with all .

The router of TM-ARCH is designed for optimizing the cir-
cuit  delay  and  routing  all  the  nets  at  the  same  time.  The
router  should  identify  and  then  schedule  multiple  qualified
nets  to  a  time-multiplex  wire  because  the  wire  is  time-multi-
plexed in TM-ARCH architecture.

4.2.  Occupation bitmap

Our algorithm can identify  a  net  (or  a  signal)  that  can be
multiplexed  to  a  wire  with  other  signals.  We  record  the  time
when a signal arrives and leaves.  This helps us to get the sig-
nal’s  occupation  bitmap,  which  shows  at  which  microcycle
this signal may occupy this wire.

4.2.1.    Arrival and leave time
A Maze router[23] is the core of our algorithm, the Pathfind-

er  algorithm[24] and the VPR 5  algorithm.  This  router  routes  a
net by wave-expanding from source and throughout the rout-
ing-resource  graph  until  the  wave-front  reaches  the  sink  of
the  net.  It  then  back-traces  the  path  and  records  it  from  its
source to sink.

tarrival tleave
tarrival

tleave

We  compute  two  timing  values:  and  for  a
wire  which  is  being  expanded.  records  when  the  sig-
nal  arrives  at  this  wire.  Furthermore,  records  when  the
signal leaves this wire. The two values can be denoted as: 

tarrival(n) = ∑
m∈source(i)↝n

dm + Tarrival(source(i)), (1)

 

tleave(n) = tarrival(n) + dn, (2)

i n

i dn n dn

tarrival dn

In  Eq.  (1),  the  first  item  on  the  right  side  indicates  the
time  needed  from  the  source  of  net  to  node .  The  second
item indicates the time when a signal arrives at the source of
net .  In Eq. (2),  is the delay of node . The value of  is il-
lustrated in the FPGA architecture files from its manufacturer.
We  get  the  signal  leave  time  by  adding  and .  In  this
work,  we  consider  the  delay  as  constant.  All  timing  values  in
both  equations  are  the  maximum  possible  delay.  We  record
the time that a signal arrives and leaves for every segment in
the  net.  One  wire  may  be  included  by  the  routes  of  multiple
nets  during  the  routing  process.  At  this  time,  we  record  all
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Fig. 2. (a) Signals  and  occupy a wire at different time. (b) In time
domain,  and  do not overlap. (c) TM switches’ different states.
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Fig. 3. Routing resource graph of TM-ARCH architecture.
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the time that signal arrives and leaves from the wire.

4.2.2.    Occupation bitmap

tarrival tleave
n

Mc

We can compute the occupation bitmap by using all  the
 and  values we record. This bitmap can be used to

represent  the  occupation  of  a  wire  by  one  net  at  different
microcycles.  The  bitmap  is  an  array  that  consists  of  ele-
ments.  Each element corresponds to one microcycle:  the first
element  corresponds  to  the  first  microcycle,  and the  last  ele-
ment corresponds to the last microcycle.

Each  element  in  the  bitmap  array  can  be  0  or  1.  “1”
means that the net uses the wire at the corresponding micro-
cycle. “0” means that the net does not occupy.

We  use  the  following  function  to  calculate  each  element
in the array, 

Bitmap[i] = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
, if tarrival > iTucycle + Tgb,

, else if tleave < (i − )Tucycle − Tgb,

, else,
(3)

 

Tucycle = Tcrit/Mc. (4)

TgbWe also use  as the guard band for the skew of the mi-
crocycle clock network. The basic idea of this equation is that
the net will only occupy this wire at a particular microcycle.

begin
end

begin end

Fig.  4 gives the pseudo code for  computing bitmaps.  We
first  set  all  bitmap  array  elements  to  zero.  Next,  we  compute
which  microcycle  signal  will  arrive  and  give  it  to  variable

.  Then  we  compute  which  microcycle  signal  will  leave,
and  give  it  to  a  variable .  Finally,  we  assign  all  elements
between  and  to  1,  which  means  in  these  micro-
cycles this net occupies the wire.

i
i

We also record the bitmap array for every wire in net . Be-
cause  we  record  the  time  when  net ’s  signal  arrives  and
leaves  the  wire,  we  use  these  data  to  calculate  the  bitmap.
We  record  multiple  occupation  bitmaps  if  this  wire  is  occu-
pied by the routes of multiple nets.

4.3.  Congestion penalties at microcycles

Because  wires  in  our  architecture  can  be  multiplexed  by
nets, our algorithm can record how many nets are currently us-
ing  this  wire  at  every  microcycle  by  using  the  micro  occu-
pancy. This micro occupancy illustrates the degree of conges-
tion  at  each  microcycle  for  a  wire.  Our  algorithm  can  com-
pute  the  congestion  penalties  of  wire  at  each  microcycle
based on its  micro occupancy values  when the wavefront  ar-
rives at the wire. Larger micro occupancy will cause larger con-
gestion penalty.

4.3.1.    Micro occupancy
McMicro  occupancy  is  a  matrix  that  consists  of  ele-

ments for each wire. Each element corresponds to one micro-
cycle  and  takes  an  integer  value,  which  means  how  many
nets  are  currently  occupying  this  wire  at  the  corresponding
microcycle.

n i
n

Firstly  we  set  all  micro  occupancy  elements  to  zero.
When wire  is included in the route of net ,  the micro occu-
pancy of  will be updated by the bitmap in section IV-B. 

uOcc[j] = { uOcc[j] + , if Bitmap[j] = ,

uOcc[j], else,
(5)

j [,Mc] j
j

j j

where  is  in .  If  the -th  element  of  bitmap  is  1,  it
means  this  net  uses  this  wire  in  the -th  microcycle  and then
-th  element  of  micro  occupancy’s -th  element  will  be  in-

creased by one.
i

i
When  a  net  is  being  disassembled,  the  micro-occupa-

tion of all wires in the route of net  is updated. 

uOcc[j] = { uOcc[j] − , if Bitmap[j] = ,
uOcc[j], else,

(6)

j [,Mc] i j
j

where  is in . Since this wire was used by net  in the -
th  microcycle,  we  should  decrease  the -th  element  of  micro
occupancy by one.

4.3.2.    Historical and present congestion penalty
With  the  records  of  micro  occupancy,  we  can  calculate

the  historical  and  present  congestion  penalties  of  a  wire  in
each microcycle. The functions we use are shown as follows: 

p[j] =  +max(, pfac[uOcc[j] +  − Cap]), (7)
 

h[j]i = { , i = ,

h[j]i− +max(, hfac[uOcc[j] − Cap]), i > .
(8)

j [,Mc] p[j]
h[j]

where  is  in .  We will  update  for  all  wires  affected
if  there  still  have  any  net  disassembled  like  VPR.  We  also  up-
date  of all wires only after one entire iteration.

hfac pfacThe  routing  schedule  shows  what  and  can  be  in
each  routing  iteration. Table  1 illustrates  the  routing  sched-
ule which is also used in VPR 5.

4.4.  Multiplexing-aware congestion cost

Cost calculation of multiplexing-aware congestion is an in-
novation  of  this  algorithm.  We  do  not  consider  it  as  conges-
tion  if  a  wire  in  our  architecture  is  used  by  two  more  signals
and they occupy the wire at different time.

Fig.  5 shows the  pseudo code for  computing congestion
cost  of  wire  in  the  wave  expansion  process.  In  this  pseudo

 

tarrival: Signal arrival time at wire n;

tleave: Signal leave time at wire n;

Tcrit: Circuit critical path delay;

Mc: Number of microcycles in a clock cycle; 

for (i = 1; i < = Mc; i + +) {

      Bitmap [i] = 0;

}

Tucycle = Tcrit/Mc;

for (i = 1; i < = Mc; i + +) {

      if (tarrival > (i − 1) * Tucycle + Tgb &&

          tarrival < i * Tucycle) {

          begin = i;

          break; 

      }

}

for (i = 1; i <= Mc; i + +) {

      if (tleave > (i − 1) * Tucycle &&

          tleave < i * Tucycle − Tgb) {

          end = i;

          break;

      }

}

for (i = begin; i < = end; i + +) {

Bitmap [i] = 1;

}
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Fig. 4. Pseudo code for computing the occupation bitmaps.
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code,  we  should  have  already  computed  the  bitmap  array
and  the  newest  historical  and  present  congestion  penalties
for every microcycle.

Lines  1–4  look  for  the  largest  historical  congestion  pen-
alty.  Lines 5–10 look for the position where the first  “1” value
is  occurred  in  a  bitmap,  and  save  it  to  begin  index.  This
means from which microcycle  the wire starts  to be occupied.
Lines  11–16  saves  the  end  index  in  a  similar  way,  which
means  at  which  microcycle  the  wire  occupation  ends.  Lines
17–20  record  the  largest  present  congestion  penalty
between  the  begin  microcycle  and  end  microcycle.  Line  21
computes  the  overall  congestion  cost  by  multiplying  the
largest  historical  and  present  congestion  penalties  and  the
base cost of wire. 

cCost = pn × hn × bn. (9)

hn

begin end

Eq. (9) is used after the VPR router obtains the new conges-
tion  cost.  We  use  the  largest  historical  congestion  penalty  in
all  microcycles  as  and  use  the  largest  present  congestion
penalty in the microcycles during which the wire is occupied.
We only award the congestion of  occupying wires in one net
from the -th microcycle until the -th microcycle.

4.5.  Overall cost function

The overcall  cost  function is  the sum of  two factors  as  in
a  VPR  router.  The  first  factor  is  the  congestion  sensitive  cost,
which  is  computed  in  Section  4.5.  The  second  factor  is  the
delay  sensitive  cost.  We  use  the  wire’s  intrinsic  delay  as  the
delay cost and weighs the two parts based on timing critical-
ity. Eq. (10) shows the overall cost function in our algorithm. 

c(n) = Crit(i, j) × d(n) + [ − Crit(i, j)] × cCost(n). (10)

4.6.  Legal routing solution

Our routing algorithm will check whether the current rout-
ing is  effective after  each iteration.  If  it  is,  our router iteration
ends and keeps this solution. But if  not,  the router will  start a
new turn iteration.

A  valid  routing  solution  should  not  contain  any  over-
used  routing  resources.  Although  a  wire  can  be  multiplexed
to be used by multiple nets,  it  is  not overused as long as it  is
occupied  by  at  most  one  net  in  any  microcycle.  Our  router
checks if Eq. (11) are met in every microcycle. 

uOcc[i] ⩽ , i ∈ [,Mc]. (11)

4.7.  Pseudo code

Fig. 6 is the pseudo code of time-multiplexing-aware rout-
ing  algorithm.  For  each  signal  in  a  net,  we  firstly  use  the
maze  router  to  route  one  signal  from  its  source  to  sink  over
the routing-resource graph and record the path it  has expan-
ded.  For  each  wire  being  expanded,  we  also  record  the  ar-
rival  time and leave time to calculate the occupation bitmap.
We use the bitmap to compute and update congestion penal-
ties  on  this  wire  and  then  evaluates  this  wire's  overall  cost.
We aim to decrease the criticality of the connection while do-
ing  the  wave  expansion.  For  all  nodes  in  each  net,  we  up-

 

Bitmap [1..Mc]: Bitmap array of net i at wire n;

Pn [1..Mc]: Present congestion penalty array of wire n;

hn [1..Mc]: Historical congestion penalty array of wire n;

bn: Base cost of wire n;

accCost = 0.;

for (i = 1; i < = Mc; i + +) {

      accCost = max (accCost, hn [i])

}

for (i = 1; i < = Mc; i + +) {

      if (Bitmap [i] = = 1) {

           begin = i;

           break;

      }

}

for (i = begin; i < = Mc; i+ +) {

      if (Bitmap [i] = = 0) {

           end= i − 1;

           break;

      }

}

presCost = 0.;

for (i = begin; i < = end; i + +) {

      presCost = max (presCost, pn [i])

}

cCost = presCost * accCost * bn;
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Fig. 5. Pseudo code for computing the congestion cost.

 

Gt: Circuil timing graph

Q(i): Priority queue used while routing net Ni

RT(i): Routing trcc of net Ni

Source(i): Source of net Ni
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Back-annotate placement delays of all nets into Gt;

Propagate timing in Gt, and compute Tcrit;

Crit(i, j) = 1.0 for all i and j;

while (overused resources exist) {

    for (each net Ni) {

         Rip-up RT(i), and update p(n) for all nodes n in RT(i);

         RT(i) = Source(i);

         for (each sink j of Ni in decreasing Crit(i, j) order) {

             Q(i) = RT(i);

             while (sink(i, j) not found) { /* Wave expansion */

                 Remove lowest cost node, m, from Q(i);

                 for (all fanout nodes n of node m) {

                     Calculate tarrival and tleave for n;

                     Calculate Bitmap (i, n) using current Tcrit;

                     Evaluate c(n);

                     Add n to the Q(i);

                 }

             } /* Routing of one sink is finished. */

             for (all nodes, n, in path from RT(i) to sink(i, j)) {

                 Update p(n);

                 Add n to RT(i);

                 Calculate tarrival and tleave for n;

                 Calculate Bitmap(i, n) using current Tcrit;

             }

             Update Elmore delay of RT(i);

             Update tarrival and tleave for all n in RT(i);

             Update Bitmap(i, n) all n in RT(i);

         } /* Routing of one net is finished. */

     } /* Routing of all nets are finished. */

     Back-annotate Elmore delays of RT(i) of all nets i into Gt;

     Propagate timing in Gt, and compute Tcrit;

     Update Bitmap(i, n) for all nets Ni on all nodes n;

     Update h(n) for all nodes n;

     Update Crit(i, j);

} /* End of one routing iteration*/

Fig. 6. Pseudo code for computing the congestion cost.

Table 1.   Resource utilization of the system.

Routing schedule Value
pfac 0.5 in the first and the second routing

iteration; 1.3 times its previous value from
the third iteration onwards.hfac
1.0 for all the iterations.
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date  its  occupied  time  and  Elmore  delay  after  this  net  has
been  completely  routed.  After  finishing  routing  all  nets,  we
compute propagate timing in circuit  timing graph and calcu-
late  critical  path  delay.  If  there  is  no  more  overused  re-
sources or reach the maximum number of iterations, the pro-
gram will stop and return the final results.

Lines 6 and 20 show that this algorithm can compute the
present  congestion  penalties  at  each  microcycle  for  wires.
Lines  14,  23,  27,  32  illustrate  the  fact  that  our  algorithm  can
compute  and  update  the  occupation  bitmap  on  wires.  Lines
13,  22,  and 26 are where our  algorithm compute and update
the time of signal arrival  and leaving. Line 15 reflects the fact
that this algorithm computes the time-multiplexing-aware con-
gestion  cost  for  a  wire  and  then  analyzes  overall  cost  of  this
wire.  Line  33  computes  the  historical  congestion  penalties  at
microcycles.  Finally,  line  4  checks  the  routing  algorithm  if
there  still  have  any  remaining  congested  routing  resources.
This  has  been  detailed  in  Section  4.  In  addition,  our  router
can also check whether the next condition holds in every mi-
crocycle.

4.8.  Algorithm analysis

In  this  part,  we  mainly  focus  on  its  unroutability  detec-
tion, time complexity and memory requirement.

4.8.1.    Unroutability detection
Our  algorithm  only  declares  the  circuit  is  unroutable

after  50  iterations  on  the  given  FPGA  like  Pathfinder  al-
gorithm. Because this process will take a long time, we will en-
hance our algorithm for quicker unroutability detection.

4.8.2.    Time conplexity
The algorithm is based on iterations. In practice, the itera-

tion  number  is  usually  limited  to  a  certain  number  of  times.
Therefore,  it  is  sufficient  to  analyze  the  iteration  complexity
in this algorithm.

O(k log k) k

The  pseudo-code  in Fig.  6 shows  that,  every  iteration  is
made  up  of  two  parts.  Netlist  routing  is  the  first  (lines  5–29),
and  post-processing  is  the  second  (lines  30–34).  Netlist  rout-
ing  means  running  routing  algorithm  for  every  net  in  netlist.
Previous work shown that the complexity of the net routing al-
gorithm in Pathfinder is [3].  means how many ter-
minals does a net has. In the routing process, the extra compu-
tations  included  in  our  algorithm  include  computing  signal’s
arrival and leave times and then computing the occupation bit-
map.

n
O(Mc) Mc

Mc

k
O(k log k)

From  Section  4.2,  we  know  that  the  time  consume  on  a
routing-resource  node  is  constant.  We  also  know  that  the
complexity  of  computing  bitmap  is .  means  how
many  microcycles  does  one  user’s  clock  cycle  have.  In  our
work,  we  limit  to  8.  As  a  result,  we  consider  it  takes  con-
stant time to get the occupation bitmap. Taking the above in-
to consideration, we can know that, for a -terminal net, rout-
ing in our algorithm will  typically take  time, which
is same as in Pathfinder.

Tcrit

O(V + E) V
E

Next  we  will  do  post-processing.  The  main  computation
is  computing  by  doing  static  timing  analysis  on  timing
graph  in  this  part.  We  also  used  the  critical  path  method
(CPM)  which  is  used  in  VPR  5  algorithm.  Sapatnekar et  al.[25]

shown  that  the  complexity  of  this  algorithm  is . 
means the vertices number in the circuit timing graph, and 
means the edges number in the timing graph.

O(C)
C

O(R) R

Back-annotation  Elmore  delay  (line  30)  will  take 
time  for  other  operations  in  the  post-processing  portion,
where  means  how  many  connections  between  source  and
sink have in this circuit. Calculating occupation bitmap and up-
dating  historical  congestion  penalty  of  all  nodes  requires

 time.  represents  the  nodes  number  in  routing-re-
source graph.

4.8.3.    Memory requirement
In  our  algorithm,  FPGA  routing-resource  graph  and  cir-

cuit  timing graph are requiring a  substantial  amount of  main
memory requirement.

O(R)
R

We record many information for all  nodes in the routing-
resource  graph,  such  as  its  connectivity  information,  physical
information,  congestion  information,  timing  information  and
some other information used for  wave expansion.  is  the
memory  requirement  from  routing-resource  graph  and 
means nodes number in routing-resource graph.

O(V + E)
V

E

We record the timing information and connectivity inform-
ation  for  all  vertex  in  timing  graphs.  For  edges  in  timing
graph,  we record the timing information and connectivity  in-
formation.  Typically,  is  the  memory  requirement  for
timing  graph.  in  this  means  vertices  number  in  the  circuit
timing  graph,  and  means  edges  number  in  the  timing
graph.

5.  Algorithm validation

We  verify  our  time-multiplexing-aware  routing  algorithm
through experiments.  By  using this  algorithm,  we implement
benchmark circuits for the TM-ARCH architecture. For compa-
rison,  we  also  implement  the  same  set  of  benchmark  circuits
for conventional architectures. To achieve an easy and fair com-
parison,  we  use  MCNC  20  benchmark  circuits  with  a  stand-
ard EDA flow.

5.1.  Experimental setup

5.1.1.    EDA flow
Fig.  7 shows  our  EDA  flow.  First,  LUTs  are  packaged  into

the cluster logic block using the TVPack tool in the VPR 5 pack-
age.  Next,  place  the  circuit  using  VPR  5.  The  wiring  is  per-
formed  twice  according  to  the  same  placement  result.  The
VPR 5 timing-driven router is used to route circuits to tradition-
al island FPGAs. TM-ARCH FPGAs with time-multiplexed inter-
connects  are  supported  by  our  time-multiplexing-aware
router.  We  call  these  two  routing  branches  as  conventional
routing  and  time-multiplexing  routing.  Since  then,  we  will
call  VPR  timing-driven  router  and  our  time-multiplexing-

 

Packing (VPR)

Placement (VPR)

Benchmark circuit

(technology mapped)

Routing

(TM-ROUTER)

tm_arch. xml

Results

arch. xml

Routing

(VPR-ROUTER)

Results

Fig. 7. (Color online) The TM-ARCH and TM-ROUTER evaluation frame-
work.

6 Journal of Semiconductors      doi: 10.1088/1674-4926/41/2/022405

 

 
R Q Luo et al.: A routing algorithm for FPGAs with time-multiplexed interconnects

 



aware router as VPR-ROUTER and TM-ROUTER.
Mc

Mc

Mc
Clkf Clkf

Mc Mc

 is  input  to  TM-ROUTER  by  command-line  option.  In
our experiment, we restrict the value of  to be 2, 4, 6, or 8.
We  think  8  is  a  reasonable  upper  limit  because  of  two  reas-
ons. First, a too large a  means a very high-frequency clock

,  because our architecture requires that frequency of 
should  be  times  the  user’s  clock.  Second,  too  large  a 
will  result  in  a  large amount of  area overhead.  It  can be seen
from the example implementation of the TM switch provided
in the paper.

5.1.2.    Assumptions of FPGA architecture
In this work,  we only consider similar FPGA architectures.

Even  with  this  assumption,  FPGA  architecture’s  design  space
is  still  quite  large,  so  we  cannot  fully  study  the  time-multi-
plexed interconnects.  In order to make the work easier to do,
we  first  fix  a  representative  benchmark  FPGA  architecture.
The  benchmark  FPGA  architecture  is  represented  in Fig.  7 as
"arch.xml",  which  uses  conventional  interconnects.  We  re-
place  all  wires  with  our  multiplexable  wires,  so  we  got  the
TM-ARCH FPGA architecture shown in Fig. 7 as "tm_arch.xml".

We choose the XML file used in iFAR[26] as the baseline FP-
GA architecture. Table 2 shows main features of this FPGA ar-
chitecture.

5.2.  Results

5.2.1.    Minimum channel width
In  this  part  of  the  experiments,  a  conventional  routing

and the time-multiplexing routing perform a binary search to
find  the  minimum  channel  width  for  each  circuit.  VPR-
ROUTER  routes  circuits  to  FPGA  with  conventional  architec-
ture  to  find  the  minimum  channel  width,  and  TM-ROUTER
does the same work on TM-ARCH FPGA. We set 50 as the max-
imum iterations number for both routing algorithms.

Wmin

W ′
min

Mc Mc

Table  3 shows  the  minimum  channel  width  experiment-
al  results.  The  numbers  listed  under  “ ”  column  are  the
minimum  channel  widths  routed  by  VPR-ROUTER  in  the  con-
ventional  algorithm.  Number  listed under  “ ”  column are
that TM-ROUTER achieves for different  values. When  =
2, TM-ARCH FPGA does not have advantages over convention-
al  architecture.  TM-ARCH  FPGA  achieve  slightly  better  results

Table 2.   Main Features of Baseline FPGA Architecture.

Feature parameter Value/specification

LUT size 4
Logic block size 10
Logic block inputs 22
Amount of bias between horizontal and vertical channels No bias
Uniformity of routing channels in the same direction Uniform
Aspect ratio 1 : 1 (Assuming square logic blocks)
Segmentation distribution 100% length 4 wires
Switch types used Uni-directional single driver switches
Switch block topology Wilton
Switch block internal population 100%
Connection block internal population 100%

McTable 3.   Minimum channel width for different  values.

Parameter Mc = ,Wmin Mc = ,W ′
min Mc = ,W ′

min Mc = ,W ′
min Mc = ,W ′

min
Alu4 48 48 30 36 26
Apex2 62 62 36 34 22
Apex4 64 64 50 36 28
Bigkey 44 44 32 32 30
Clma 78 76 74 48 34
Des 44 42 34 32 32
Diffeq 38 36 34 32 30
Dsip 38 36 30 30 30
Elliptic 62 58 52 N.A. 34
Ex1010 74 74 60 40 34
Ex5p 68 68 48 34 22
Frisc 74 74 44 40 40
Misex3 54 54 42 26 22
Pdc 90 90 128 60 70
S298 34 34 28 28 20
S38417 48 48 50 26 22
S38584.1 50 50 48 26 22
Seq 60 60 48 26 22
Spla 74 72 N.A. 52 34
Tseng 46 46 40 34 32
Geo.Mean 56 55 44 34 29
Reduction – –1.78% –21.43% –39.28% –48.21%
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for only 5 circuits (des, diffeq, dsip, elliptic, and tseng) in 20 cir-
cuits.  This  result  is  counter-intuitive,  because  we  expect  TM-
ARCH FPGA to result in the minimum channel width of all cir-
cuits.

Mc = 

Wmin

We  think  that,  in  one  clock  cycle  there  are  two  micro-
cycles that can only supplies little opportunity to TM-ROUTER
to  achieve  time  multiplexing  of  wires. Table  4,  “ ”  lists
the  wire  percentage  used  in  the  first  two  microcycles  for
MCNC 20 benchmark circuits, when we divide a clock cycle in-
to two microcycles.  The data are generated in  the manner  as
follows.  We  adjust  VPR-ROUTER  codes  in  order  to  record  the
time  when  the  signal  occupies  wire  to  the  result.  Then  we
start  VPR-ROUTER  routing  process  with  the  minimum  chan-
nel  width  listed  in Table  3 column  “ ”.  After  that,  we  use
a program to analyze the results and determine which micro-
cycle each line segment is used in according to Eq. (3). The pro-
gram  also  counts  the  portion  of  wires  used  in  each  micro-
cycle in the final routing.

Mc = 

Table  4 shows that,  in  the  first  microcycle,  92.85% of  the
wires  are  used,  while  in  the  second  microcycle,  only  5.17%
wires  are  used.  This  means  that  TM-ROUTER  has  very  limited
opportunities for time-multiplexing in this condition. To imple-
ment  time-multiplexing  in  FPGAs,  our  routing  algorithm  will
match  the  same  wire  in  the  first  microcycle  and  the  second
microcycle. Table  4 shows  that  used  wire  segments  are  most
likely  to  be used by net  in  the first  microcycle,  and less  likely
to  be  used  by  another  net  in  the  second  microcycle,  so  our
time-multiplexing-aware  algorithm  may  less  likely  to  imple-
ment  time-multiplexing  wires  in  this  situation.  Looking  back
at  Section  4,  the  signal  does  not  be  actively  delayed  by  our
routing  algorithm.  But  scheduling  algorithm  of  Francis et  al’s
does  it  to  implement  more  time-multiplexing[9].  We  can  see
that,  when  a  clock  cycle  is  divided  into  four  microcycles, Ta-
ble  4,  column  “ ”,  tabulates  the  microcycle  distribution
using the wires. The process of generating these data is simil-

Mc = 

Mc = 

ar  to  for .  In  this  condition,  the  distribution  between
the  first  and  second  microcycle  seems  more  balanced  than
when . This gives TM-ROUTER more opportunities to im-
plement time-multiplexing.

Mc

Mc = 
Mc =  Mc =  Mc

TM-ARCH  generally  needs  a  smaller  channel  width  from
 = 4.  This  follows our  expectations that  multiplex can lead

to minimum channel width reduction. The result will be more
significant  when  the  division  of  microcycle  is  more  detailed:
the reduction of  minimum channel  width is  19.86% ( ),
37.74%  ( ),  and  47.89%  ( ).  With  increases,
one wire can be multiplexed by more nets, so fewer wires are
required to route a given number of nets.

5.2.2.    Circuit critical path delay
FPGAs  routing  resources  are  often  not  heavily  utilized  in

order  to  reduce  latency  in  real  applications.  So  we  use  20%
more  minimum  channel  width  than Table  3 to  do  the  rout-
ing  process.  In  this  section,  we  also  assume  that  TM  switch
has same delay with its conventional switch.

Tcrit
T′crit
Mc = 

Mc

Table  5 lists  the  critical  path  delays  with  low-stress  rout-
ing  for  20  benchmark  circuits.  “ ”  column  is  the  result  of
the conventional architecture, while the “ ” columns is the
result  the  TM-ARCH  architecture.  When ,  the  critical
path delay of TM-ARCH is slightly larger (1.13%) and the chan-
nel  width  used  is  slightly  smaller  (4.08%).  However,  when

 = 4, 6, and 8, the channel width uses by TM-ROUTER is re-
duced  by  19.69%,  37.87%,  and  46.97%.  Moreover,  the  critical
path delay of TM-ROUTER can be moderately reduced: 1.79%,
3.84%, and 1.28%.

In  conventional  FPGAs,  circuit  critical  path  may  not  be
routed in the shortest path due to limited routing. This is true
even when low-stress wiring is performed. Unlike convention-
al  FPGAs,  the  TM-ARCH  architecture  allows  multiple  signals
multiplex wires in different clock cycles. This effectively mitig-
ates its routing congestion. As a result, the circuit critical path

Mc = , Table 4.   Percentages (%) of wire used in each individual microcycle for 20 benchmark circuits with .

Parameter
Mc =  Mc = 

1st 2nd 1st 2nd 3rd 4th

Alu4 94.59 4.67 56.04 29.64 4.19 0.45
Apex2 97.09 2.42 67.82 25.32 2.17 0.21
Apex4 87.35 10.56 28.13 56.96 9.45 1.00
Bigkey 93.65 4.77 61.57 28.13 4.77 0.00
Clma 96.50 2.97 68.86 25.69 2.83 0.12
Des 90.08 9.15 63.16 24.61 6.50 1.96
Diffeq 95.97 3.80 74.31 18.47 3.71 0.10
Dsip 94.70 4.28 59.70 31.89 4.04 0.18
Elliptic 95.35 4.46 87.51 7.36 3.65 0.73
Ex1010 90.04 8.67 23.65 64.19 7.98 0.51
Ex5p 82.63 14.85 21.70 56.98 12.71 1.99
Frisc 86.87 12.06 68.23 18.50 10.58 1.41
Misex3 93.09 5.60 52.19 33.60 4.64 0.80
Pdc 95.09 4.36 46.93 42.92 3.88 0.42
S298 85.82 13.48 63.21 21.00 9.76 3.16
S38417 92.87 6.60 65.09 24.77 5.83 0.67
S38584.1 97.41 1.88 73.30 19.91 1.59 0.26
Seq 97.50 2.20 69.24 24.66 1.99 0.17
Spla 95.98 3.60 49.20 41.06 3.31 0.25
Tseng 96.48 3.34 88.49 6.82 2.35 0.73
Geo.Mean 92.85 5.17 55.83 26.19 4.49 0.51
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is likely to be routed in a shorter path.

6.  Conclusion

In this paper we propose a time-multiplexing FPGA archi-
tecture and its routing algorithm. Our algorithm actively identi-
fies  the  qualified  interconnects  that  can  be  multiplexed  on
our  new  FPGA  architecture.  We  have  validated  the  architec-
ture  and  algorithm  by  implementing  it  as  a  multiplexing-
aware  router  and  using  this  router  to  implement  benchmark
circuits to FPGAs with time-multiplexed interconnects. The res-
ults  show  that  compared  with  an  existing  router  targeting  a
conventional  island-style  architecture,  38%  smaller  minimum
channel width and 3.8% smaller circuit critical  path delay can
be achieved.
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